References and Notes
<A NAME="RD06209ST-1A">1a</A>
Hoppe D.
Stereoselective
Synthesis, In Science of Synthesis (Houben-Weyl)
3rd
ed., Vol. E21:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1996.
p.1357-1409
<A NAME="RD06209ST-1B">1b</A>
Roush WR.
Stereo-selective Synthesis, In Science of Synthesis (Houben-Weyl)
3rd
ed., Vol. E21:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1996.
p.1410-1486
<A NAME="RD06209ST-1C">1c</A>
Denmark SE.
Almstead NG. In Modern Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
p.299-401
<A NAME="RD06209ST-1D">1d</A>
Chemler SR.
Roush WR. In Modern Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
p.403-490
<A NAME="RD06209ST-1E">1e</A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RD06209ST-2">2</A>
Hoffmann RW.
Weidmann U.
J. Organomet. Chem.
1980,
195:
137
Selected recent examples:
<A NAME="RD06209ST-3A">3a</A>
Pietruszka J.
Schöne N.
Frey W.
Grundl L.
Chem. Eur. J.
2008,
14:
5178
<A NAME="RD06209ST-3B">3b</A>
Pietruszka J.
Schöne N.
Synthesis
2006,
24
<A NAME="RD06209ST-3C">3c</A>
Pietruszka J.
Schöne N.
Eur. J. Org. Chem.
2004,
5011
<A NAME="RD06209ST-3D">3d</A>
Pietruszka J.
Schöne N.
Angew. Chem. Int. Ed.
2003,
42:
5638
<A NAME="RD06209ST-3E">3e</A>
Berrée F.
Gernigon N.
Hercouret A.
Lin CH.
Carboni B.
Eur. J. Org. Chem.
2009,
329
<A NAME="RD06209ST-3F">3f</A>
Peng F.
Hall DG.
Tetrahedron Lett.
2007,
48:
3305
<A NAME="RD06209ST-3G">3g</A>
Ito H.
Kawakami C.
Sawamura M.
J.
Am. Chem. Soc.
2005,
127:
16034
<A NAME="RD06209ST-3H">3h</A>
Beckmann E.
Desai V.
Hoppe D.
Synlett
2004,
2275
<A NAME="RD06209ST-3I">3i</A>
Pelz NF.
Woodward AR.
Burks HE.
Sieber JD.
Morken JP.
J. Am. Chem. Soc.
2004,
126:
16328
<A NAME="RD06209ST-3J">3j</A>
Gao X.
Hall DG.
J. Am. Chem. Soc.
2003,
125:
9308
<A NAME="RD06209ST-3K">3k</A>
Flamme EM.
Roush WR.
J.
Am. Chem. Soc.
2002,
124:
13644
<A NAME="RD06209ST-3L">3l</A>
Flamme EM.
Roush WR.
Beilstein
J. Org. Chem.
2005,
1:
7
<A NAME="RD06209ST-3M">3m</A>
Matteson SD.
Tetrahedron
1998,
54:
10555
<A NAME="RD06209ST-3N">3n</A>
Brown HC.
Narla G.
J.
Org. Chem.
1995,
60:
4686
<A NAME="RD06209ST-3O">3o</A>
Stürmer R.
Angew. Chem., Int. Ed. Engl.
1990,
29:
59
<A NAME="RD06209ST-3P">3p</A>
Hoffmann RW.
Pure Appl. Chem.
1988,
60:
123
<A NAME="RD06209ST-3Q">3q</A>
Hoffmann RW.
Dresely S.
Angew. Chem.,
Int. Ed. Engl.
1986,
25:
189
Syntheses of 1a:
<A NAME="RD06209ST-4A">4a</A>
Luithle JEA.
Pietruszka J.
J.
Org. Chem.
2000,
65:
9194
<A NAME="RD06209ST-4B">4b</A>
Luithle JEA.
Pietruszka J.
J.
Org. Chem.
1999,
64:
8287
<A NAME="RD06209ST-4C">4c</A>
Luithle JEA.
Pietruszka J.
Witt A.
Chem. Commun.
1998,
2651
<A NAME="RD06209ST-4D">4d</A> For an improved synthesis
of the auxiliary, see:
Bischop M.
Cmrecki V.
Ophoven V.
Pietruszka J.
Synthesis
2008,
2488
Applications of 2a in
natural product syntheses:
<A NAME="RD06209ST-5A">5a</A>
Pietruszka J.
Rieche ACM.
Schöne N.
Synlett
2008,
2525
<A NAME="RD06209ST-5B">5b</A>
Pietruszka J.
Rieche ACM.
Adv. Synth.
Catal.
2008,
350:
1407
<A NAME="RD06209ST-6A">6a</A>
Tamaru Y.
Eur. J. Org. Chem.
2005,
2647
<A NAME="RD06209ST-6B">6b</A>
Masuyama Y.
Kinugawa N.
Kurusu Y.
J.
Org. Chem.
1987,
52:
3702
<A NAME="RD06209ST-6C">6c</A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RD06209ST-6D">6d</A>
Zanoni G.
Pontiroli A.
Marchetti A.
Vidari G.
Eur. J. Org. Chem.
2007,
3599
<A NAME="RD06209ST-7A">7a</A>
Masuyama Y.
Takahara JP.
Kurusu Y.
J. Am. Chem. Soc.
1988,
110:
4473
<A NAME="RD06209ST-7B">7b</A>
Masuyama Y.
Hayashi R.
Otake K.
Kurusu Y.
J. Chem. Soc., Chem. Commun.
1988,
44
<A NAME="RD06209ST-7C">7c</A>
Okano T.
Kiji J.
Doi T.
Chem.
Lett.
1998,
5
<A NAME="RD06209ST-7D">7d</A>
Masuyama Y.
Ito A.
Kurusu Y.
Chem.
Commun.
1998,
315
<A NAME="RD06209ST-7E">7e</A>
Masuyama Y.
Takahara JP.
Kurusu Y.
Tetrahedron
Lett.
1989,
30:
3437
<A NAME="RD06209ST-7F">7f</A>
Takahara JP.
Masuyama Y.
Kurusu Y.
J. Am. Chem. Soc.
1992,
114:
2577
<A NAME="RD06209ST-8">8</A>
General Procedure
for the Palladium-Catalyzed Carbonyl Allylation of Aldehydes with
SnCl
2
- Synthesis of
7
To a solution of 1b (1.0 mmol) in DMF (3 mL) was added SnCl2 (3.0
mmol), PdCl2 (PhCN)2 (5 mol%), H2O
(25 mmol), and the appropriate aldehyde (1.0 mmol). The solution
was stirred at r.t. until the reaction was completed (monitored
by TLC, 2 h). The reaction mixture was diluted with Et2O
(120 mL) and washed successively with aq 10% HCl soln (10
mL), sat. NaHCO3 (10 mL), H2O (10 mL), and brine
(10 mL). The extracts were dried over anhyd MgSO4, the
solvent was removed under reduced pressure and the crude product
subjected to flash column chromatography on SiO2 (PE-EtOAc,
90:10) and MPLC (PE-EtOAc, 98:2) affording α-substituted
allylboronic esters 7, 8,
and 9 as colorless foams.
Selected Data for 7b
Prepared
according to the general procedure: 79% yield of 7b after flash column chromatography. [α]D
²0 -93.2
(c 1.02, CHCl3). ¹H
NMR (600 MHz, CDCl3): δ = 1.85 (dd, ³
J
2,1 = 6.0
Hz, ³
J
2,3 = 9.7
Hz, 1 H, 2-H), 2.02 (d, ³
J
OH,1 = 2.3
Hz, 1 H, OH), 2.97 (s, 6 H, OCH3), 4.57 (dd, ³
J
1,OH = 2.3
Hz, ³
J
1,2 = 6.0
Hz, 1 H, 1-H), 4.73 (ddd, 4
J
4-
E
,2 = 0.7
Hz,
²
J
4-
E
,4-
Z
= 1.9
Hz, ³
J
4-
E
,3 = 17.1
Hz, 1 H, 4-H
E
), 4.89 (dd, ²
J
4-
Z
,4-
E
= 1.9
Hz, ³
J
4-
Z
,3 = 10.2
Hz, 1 H, 4-H
Z
), 5.29 (s, 2
H, 4′-H, 5′-H), 5.53 (ddd, ³
J
3,2 = 9.9
Hz, ³
J
3,4-
Z
= 9.9
Hz, ³
J
3,4-
E
= 17.1 Hz,
1 H, 3-H), 7.01-7.40 (m, 25 H, arom. CH). ¹³C NMR
(151 MHz, CDCl3): δ = 40.10 (C-2),
51.98 (OCH3), 72.65 (C-1),
78.22 (C-4′, C-5′), 83.60 (CPh2OMe),
117.78 (C-4), 126.58, 127.03, 127.62, 127.67, 127.79, 127.86, 128.05,
128.84, 129.89 (arom. CH), 134.25 (C-3), 141.20, 141.31, 143.18
(arom. C
ipso
). Anal. Calcd
(%) for C40H39BO5 (610.29):
C, 78.69; H, 6.44. Found: C, 78.26; H, 6.59.
<A NAME="RD06209ST-9">9</A>
Furlani D.
Marton D.
Tagliavini G.
Zordan MJ.
J. Organomet.
Chem.
1988,
341:
345
<A NAME="RD06209ST-10">10</A>
Barrett AGM.
Malecha JW.
J.
Chem. Soc., Perkin Trans. 1
1994,
1901
<A NAME="RD06209ST-11">11</A>
Freire F.
Seco JM.
Quiñoa E.
Riguera R.
J. Org. Chem.
2005,
70:
3778 ; attempts to separate the enantiomers by chromatographic
methods failed; however, since starting from diastereomerically
pure reagents with no racemization expected during the addition,
the Mosher method lends additional support to the assignment